Альберт Фельдман (felbert) wrote,
Альберт Фельдман
felbert

Categories:

Загадка дня

Перед вами два треугольника. Верхний разделен без остатка на четыре фрагмента, окрашенные разными цветами. В нижнем треугольнике те же самые фрагменты расположены в другом порядке. Внимание, вопрос. Откуда взялся лишний пустой квадрат?

Откуда появился лишний пустой квадрат?



В действительности это не оптический обман, а интересная задача. Площади закрашенных фигур, разумеется, равны между собой (32 клетки), однако, то, что визуально наблюдается как треугольники 13×5, на самом деле таковым не является, и имеет разные площади (S13×5 = 32,5 клетки). То есть ошибка, замаскированная в условии задачи, состоит в том, что начальная фигура поименована треугольником (на самом деле это — вогнутый 4-угольник). Это отчётливо заметно на рисунке-схеме ниже — «гипотенузы» верхней и нижней фигур проходят через разные точки: (8,3) вверху и (5,2) — внизу. Секрет в свойствах синего и красного треугольников. Это легко проверить вычислениями.



Отношения длин соответствующих сторон синего и красного треугольников не равны друг другу (2/3 и 5/8), поэтому эти треугольники не являются подобными, а значит, имеют разные углы при соответствующих вершинах. Назовём первую фигуру, являющуюся вогнутым четырёхугольником, и вторую фигуру, являющуюся вогнутым восьмиугольником, псевдотреугольниками. Если нижние стороны этих псевдотреугольников параллельны, то гипотенузы в обоих псевдотреугольниках 13×5 на самом деле являются ломаными линиями (на верхнем рисунке создаётся излом внутрь, а на нижнем — наружу). Если наложить верхнюю и нижнюю фигуры 13×5 друг на друга, то между их «гипотенузами» образуется параллелограмм, в котором и содержится «лишняя» площадь. На рисунке-схеме этот параллелограмм приведён в верных пропорциях.
Острый угол в этом параллелограмме равен arcctg 46 ≈ 0°1′18,2″. На такой угол минутная стрелка на исправных часах сдвигается за 12,45 с. Именно на такую величину тупой угол в рассматриваемом параллелограмме отличается от развёрнутого. Визуально столь ничтожное отличие незаметно, зато оно хорошо просматривается на анимации.
По словам Мартина Гарднера, эту задачу изобрёл иллюзионист-любитель из Нью-Йорка Пол Карри в 1953. Однако принцип, заложенный в неё, был известен ещё в 1860-е годы. Можно заметить, что длины сторон фигур из данной задачи (2, 3, 5, 8, 13) являются последовательными числами Фибоначчи. (с)
Tags: загадки, интересности, фигуры
Subscribe

  • Очень необычная работа

    Когда Эндрю Коллер получил работу на месторождении битуминозных песков (или нефтяных песков) в Альберте (Канада), он и не ожидал, что именно ему…

  • Вещи, которые очень раздражают

    Каждому из нас знакомо чувство, когда что-то раздражает до трясучки. У всех разные триггеры: одного бесят наклейки на товарах, другого —…

  • Необычный туалет в Николаеве

    В Николаеве местные власти отметились неординарным поступком: на стадионе открыли новый санузел с прозрачными стеклами. Известно, что…

promo felbert april 3, 2014 11:11 7
Buy for 100 tokens
"Свыше 10 000 просмотров в сутки за 100 жетонов. По вопросам серьёзного сотрудничества пишите на felbert@yandex.ua"
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments